Electric stimulation parameters for an epi-retinal prosthesis

نویسنده

  • Andrew Eli Grumet
چکیده

This work was undertaken to contribute to the development of an epi-retinal prosthesis which may someday restore vision to patients blinded by outer retinal degenerations like retinitis pigmentosa. By stimulating surviving cells in tens or hundreds of distinct regions across the retinal surface, the prosthesis might convey the visual scene in the same way that images are represented on a computer screen. The anatomical and functional arrangement of retinal neurons, however, poses a potential obstacle to the success of this approach. Stimulation of ganglion cell axons—which lie in the optic nerve fiber layer between stimulating electrodes and their intended targets, and which originate from a relatively diffuse peripheral region—would probably convey the perception of a peripheral blur, detracting from the usefulness of the imagery. Inspired by related findings in brain and peripheral nerve stimulation, experiments were performed in the isolated rabbit retina to determine if excitation thresholds for ganglion cell axons could be raised by orienting the stimulating electric field perpendicularly to the axons’ path. Using a custom-designed apparatus, axon (and possibly dendrite) thresholds were measured for stimulation through a micro-fabricated array of disk electrodes each having a diameter of ten microns. The electrodes were driven singly versus a distant return (monopolar stimulation) and in pairs (bipolar stimulation) oriented along fibers (longitudinal orientation) or across fibers (transverse orientation). Transverse thresholds were measured for a range of fiber displacements between the two poles of the bipolar electrode pair, and compared in each case with the monopolar threshold for the closer pole. Transverse/monopolar threshold ratios were near unity when one of the poles was directly over the fiber, but rose rapidly with improved centering of the bipolar pair. Longitudinal/monopolar threshold ratios were near unity over the same range of displacements. As in previous work by others, thresholds were highest for perpendicular stimulating fields. Practical application of this result will require electrode designs which minimize longitudinal fringing fields. Thesis Supervisor: John L. Wyatt, Jr. Title: Professor of Electrical Engineering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Electrode Array for Retinal Stimulation

In this Work, ITO/PET (Indium Tin Oxide / Polyethylene Terephthalate) electrode structure which provides biocompatibility, mechanical stability and flexibility is fabricated. Flexible ITO/PET implantable electrode array for a retina has been developed. The electrode array is fabricated on a thin PET/ITO substrate and is encapsulated using, SU-8, an insulating material. PET substrate and SU-8 po...

متن کامل

Comparison of two models of electric neuro-stimulation and consequences for the design of retinal prostheses

Two simple mathematical models of electric neuro-stimulation are derived and discussed. It is found that the common injected-charge model is less realistic than a model, in which a latency period, which follows after a short electric pulse, plays a role as important as the electric pulse. A stimulation signal is proposed that takes advantage of these findings and calls for experimental testing.

متن کامل

Encoding visual information in retinal ganglion cells with prosthetic stimulation.

Retinal prostheses aim to restore functional vision to those blinded by outer retinal diseases using electric stimulation of surviving retinal neurons. The ability to replicate the spatiotemporal pattern of ganglion cell spike trains present under normal viewing conditions is presumably an important factor for restoring high-quality vision. In order to replicate such activity with a retinal pro...

متن کامل

Learning a Neural Response Metric for Retinal Prosthesis

Retinal prostheses for treating incurable blindness are designed to electrically stimulate surviving retinal neurons, causing them to send artificial visual signals to the brain. However, electrical stimulation generally cannot precisely reproduce typical patterns of neural activity in the retina. Therefore, an electrical stimulus must be selected so as to produce a neural response as close as ...

متن کامل

A CMOS vision chip using modified Pulse-Frequency-Modulation (PFM) as an implanted retinal prosthesis device under the subretinal space

We propose a CMOS vision chip, an image sensor with pixel-level signal processing, to serve as a replacement for degenerated photoreceptor cells in the retina. In our approach, a vision chip is implanted underneath the retina (the subretinal space). For efficient electric stimulation, we utilize a pulse frequency modulation (PFM). Each pixel consists of a photosensor and a signal processor. Eac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999